Your browser doesn't support javascript.
loading
Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress.
Pedrigi, Ryan M; de Silva, Ranil; Bovens, Sandra M; Mehta, Vikram V; Petretto, Enrico; Krams, Rob.
Afiliação
  • Pedrigi RM; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
  • de Silva R; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
  • Bovens SM; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
  • Mehta VV; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
  • Petretto E; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
  • Krams R; From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical
Arterioscler Thromb Vasc Biol ; 34(10): 2224-31, 2014 Oct.
Article em En | MEDLINE | ID: mdl-25060797
ABSTRACT
In this review, we summarized the effect of mechanical factors (shear and wall stress) on thin-cap fibroatheroma formation and rupture. To make this review understandable for a biology-oriented audience, we start with detailed definitions of relevant mechanical metrics. We then describe how biomechanics has supported histopathologic efforts to understand the basis of plaque rupture. In addition to plaque rupture, biomechanics also contributes toward the progression of thin-cap fibroatheroma through a multitude of reported mechanobiological mechanisms. We thus propose a new mechanism whereby both shear stress and wall stress interact to create thin-cap fibroatheromas. Specifically, when regions of certain blood flow and wall mechanical stimuli coincide, they synergistically create inflammation within the cellular environment that can lead to thin-cap fibroatheroma rupture. A consequence of this postulate is that local shear stress is not sufficient to cause rupture, but it must coincide with regions of local tissue stiffening and stress concentrations that can occur during plaque progression. Because such changes to the wall mechanics occur over a micrometer scale, high spatial resolution imaging techniques will be necessary to evaluate this hypothesis and ultimately predict plaque rupture in a clinical environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artérias / Mecanotransdução Celular / Aterosclerose / Placa Aterosclerótica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artérias / Mecanotransdução Celular / Aterosclerose / Placa Aterosclerótica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2014 Tipo de documento: Article