Your browser doesn't support javascript.
loading
Optimising the production of succinate and lactate in Escherichia coli using a hybrid of artificial bee colony algorithm and minimisation of metabolic adjustment.
Tang, Phooi Wah; Choon, Yee Wen; Mohamad, Mohd Saberi; Deris, Safaai; Napis, Suhaimi.
Afiliação
  • Tang PW; Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Electronic address: pwtang2@live.utm.my.
  • Choon YW; Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Electronic address: ywchoon2@live.utm.my.
  • Mohamad MS; Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Electronic address: saberi@utm.my.
  • Deris S; Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Electronic address: safaai@utm.my.
  • Napis S; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address: suhaimi@putra.upm.edu.my.
J Biosci Bioeng ; 119(3): 363-8, 2015 Mar.
Article em En | MEDLINE | ID: mdl-25216804
Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Algoritmos / Ácido Láctico / Ácido Succínico / Escherichia coli / Engenharia Metabólica / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Biosci Bioeng Assunto da revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Algoritmos / Ácido Láctico / Ácido Succínico / Escherichia coli / Engenharia Metabólica / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Biosci Bioeng Assunto da revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Ano de publicação: 2015 Tipo de documento: Article