Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride.
Circulation
; 130(20): 1790-9, 2014 Nov 11.
Article
em En
| MEDLINE
| ID: mdl-25266948
BACKGROUND: Intramyocardial triglyceride (TG) turnover is reduced in pressure-overloaded, failing hearts, limiting the availability of this rich source of long-chain fatty acids for mitochondrial ß-oxidation and nuclear receptor activation. This study explored 2 major dietary fats, palmitate and oleate, in supporting endogenous TG dynamics and peroxisome proliferator-activated receptor-α activation in sham-operated (SHAM) and hypertrophied (transverse aortic constriction [TAC]) rat hearts. METHODS AND RESULTS: Isolated SHAM and TAC hearts were provided media containing carbohydrate with either (13)C-palmitate or (13)C-oleate for dynamic (13)C nuclear magnetic resonance spectroscopy and end point liquid chromatography/mass spectrometry of TG dynamics. With palmitate, TAC hearts contained 48% less TG versus SHAM (P=0.0003), whereas oleate maintained elevated TG in TAC, similar to SHAM. TG turnover in TAC was greatly reduced with palmitate (TAC, 46.7±12.2 nmol/g dry weight per min; SHAM, 84.3±4.9; P=0.0212), as was ß-oxidation of TG. Oleate elevated TG turnover in both TAC (140.4±11.2) and SHAM (143.9±15.6), restoring TG oxidation in TAC. Peroxisome proliferator-activated receptor-α target gene transcripts were reduced by 70% in TAC with palmitate, whereas oleate induced normal transcript levels. Additionally, mRNA levels for peroxisome proliferator-activated receptor-γ-coactivator-1α and peroxisome proliferator-activated receptor-γ-coactivator-1ß in TAC hearts were maintained by oleate. With these metabolic effects, oleate also supported a 25% improvement in contractility over palmitate with TAC (P=0.0202). CONCLUSIONS: The findings link reduced intracellular lipid storage dynamics to impaired peroxisome proliferator-activated receptor-α signaling and contractility in diseased hearts, consistent with a rate-dependent lipolytic activation of peroxisome proliferator-activated receptor-α. In decompensated hearts, oleate may serve as a beneficial energy substrate versus palmitate by upregulating TG dynamics and nuclear receptor signaling.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Palmitatos
/
Triglicerídeos
/
Gorduras na Dieta
/
Ácido Oleico
/
PPAR alfa
/
Insuficiência Cardíaca
/
Miocárdio
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Circulation
Ano de publicação:
2014
Tipo de documento:
Article