Expression of a pathogenic mutation of SOD1 sensitizes aprataxin-deficient cells and mice to oxidative stress and triggers hallmarks of premature ageing.
Hum Mol Genet
; 24(3): 828-40, 2015 Feb 01.
Article
em En
| MEDLINE
| ID: mdl-25274775
Aprataxin (APTX) deficiency causes progressive cerebellar degeneration, ataxia and oculomotor apraxia in man. Cell free assays and crystal structure studies demonstrate a role for APTX in resolving 5'-adenylated nucleic acid breaks, however, APTX function in vertebrates remains unclear due to the lack of an appropriate model system. Here, we generated a murine model in which a pathogenic mutant of superoxide dismutase 1 (SOD1(G93A)) is expressed in an Aptx-/- mouse strain. We report a delayed population doubling and accelerated senescence in Aptx-/- primary mouse fibroblasts, which is not due to detectable telomere instability or cell cycle deregulation but is associated with a reduction in transcription recovery following oxidative stress. Expression of SOD1(G93A) uncovers a survival defect ex vivo in cultured cells and in vivo in tissues lacking Aptx. The surviving neurons feature numerous and deep nuclear envelope invaginations, a hallmark of cellular stress. Furthermore, they possess an elevated number of high-density nuclear regions and a concomitant increase in histone H3 K9 trimethylation, hallmarks of silenced chromatin. Finally, the accelerated cellular senescence was also observed at the organismal level as shown by down-regulation of insulin-like growth factor 1 (IGF-1), a hallmark of premature ageing. Together, this study demonstrates a protective role of Aptx in vivo and suggests that its loss results in progressive accumulation of DNA breaks in the nervous system, triggering hallmarks of premature ageing, systemically.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Superóxido Dismutase
/
Transcrição Gênica
/
Proteínas Nucleares
/
Senilidade Prematura
/
Proteínas de Ligação a DNA
/
Neurônios Motores
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Hum Mol Genet
Assunto da revista:
BIOLOGIA MOLECULAR
/
GENETICA MEDICA
Ano de publicação:
2015
Tipo de documento:
Article