Your browser doesn't support javascript.
loading
Criterion learning in rule-based categorization: simulation of neural mechanism and new data.
Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd.
Afiliação
  • Helie S; Department of Psychological Sciences, Purdue University, United States. Electronic address: shelie@purdue.edu.
  • Ell SW; Department of Psychology, University of Maine, Maine Graduate School of Biomedical Sciences and Engineering, United States.
  • Filoteo JV; VA San Diego Healthcare System, University of California, San Diego, United States.
  • Maddox WT; Department of Psychology, University of Texas, Austin, United States.
Brain Cogn ; 95: 19-34, 2015 Apr.
Article em En | MEDLINE | ID: mdl-25682349
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Aprendizagem / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Brain Cogn Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Aprendizagem / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Brain Cogn Ano de publicação: 2015 Tipo de documento: Article