Your browser doesn't support javascript.
loading
Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae.
Jarnuczak, Andrew F; Eyers, Claire E; Schwartz, Jean-Marc; Grant, Christopher M; Hubbard, Simon J.
Afiliação
  • Jarnuczak AF; Faculty of Life Sciences, Michael Smith Building, Manchester, UK.
  • Eyers CE; Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
  • Schwartz JM; Faculty of Life Sciences, Michael Smith Building, Manchester, UK.
  • Grant CM; Faculty of Life Sciences, Michael Smith Building, Manchester, UK.
  • Hubbard SJ; Faculty of Life Sciences, Michael Smith Building, Manchester, UK.
Proteomics ; 15(18): 3126-39, 2015 Sep.
Article em En | MEDLINE | ID: mdl-25689132
ABSTRACT
Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Deleção de Genes / Adenosina Trifosfatases / Proteínas de Choque Térmico HSP70 / Proteínas de Saccharomyces cerevisiae Idioma: En Revista: Proteomics Assunto da revista: BIOQUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Deleção de Genes / Adenosina Trifosfatases / Proteínas de Choque Térmico HSP70 / Proteínas de Saccharomyces cerevisiae Idioma: En Revista: Proteomics Assunto da revista: BIOQUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Reino Unido