Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.
ACS Appl Mater Interfaces
; 7(11): 6273-81, 2015 Mar 25.
Article
em En
| MEDLINE
| ID: mdl-25697544
In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-bÌ]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2015
Tipo de documento:
Article
País de afiliação:
Taiwan