Your browser doesn't support javascript.
loading
Diacetylene mixed Langmuir monolayers for interfacial polymerization.
Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis.
Afiliação
  • Ariza-Carmona L; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
  • Rubia-Payá C; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
  • García-Espejo G; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
  • Martín-Romero MT; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
  • Giner-Casares JJ; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
  • Camacho L; Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
Langmuir ; 31(19): 5333-44, 2015 May 19.
Article em En | MEDLINE | ID: mdl-25897774
ABSTRACT
Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DAOTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article