Your browser doesn't support javascript.
loading
Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models.
Pozzorini, Christian; Mensi, Skander; Hagens, Olivier; Naud, Richard; Koch, Christof; Gerstner, Wulfram.
Afiliação
  • Pozzorini C; Laboratory of Computational Neuroscience (LCN), Brain Mind Institute, School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Mensi S; Laboratory of Computational Neuroscience (LCN), Brain Mind Institute, School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Hagens O; Laboratory of Neural Microcircuitry (LNMC), Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Naud R; Department of Physics, University of Ottawa, Ottawa, Canada.
  • Koch C; Allen Institute for Brain Science, Seattle, Washington, USA.
  • Gerstner W; Laboratory of Computational Neuroscience (LCN), Brain Mind Institute, School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
PLoS Comput Biol ; 11(6): e1004275, 2015 Jun.
Article em En | MEDLINE | ID: mdl-26083597
Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization procedure we previously introduced, a Generalized Integrate-and-Fire model can be accurately fitted with a limited amount of data. The model is capable of predicting both the spiking activity and the subthreshold dynamics of different cell types, and can be used for online characterization of neuronal properties. A protocol is proposed that, combined with emergent technologies for automatic patch-clamp recordings, permits automated, in vitro high-throughput characterization of single neurons.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Biologia Computacional / Ensaios de Triagem em Larga Escala / Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Biologia Computacional / Ensaios de Triagem em Larga Escala / Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Suíça