Your browser doesn't support javascript.
loading
Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.
Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog.
Afiliação
  • Steffensen LB; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
  • Mortensen MB; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
  • Kjolby M; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
  • Hagensen MK; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
  • Oxvig C; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
  • Bentzon JF; From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Departm
Arterioscler Thromb Vasc Biol ; 35(9): 1928-35, 2015 Sep.
Article em En | MEDLINE | ID: mdl-26183617
ABSTRACT

OBJECTIVE:

Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. APPROACH AND

RESULTS:

Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation.

CONCLUSIONS:

Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aorta Torácica / Fluxo Sanguíneo Regional / Artérias Carótidas / Aterosclerose / Lipoproteínas / Músculo Liso Vascular Limite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aorta Torácica / Fluxo Sanguíneo Regional / Artérias Carótidas / Aterosclerose / Lipoproteínas / Músculo Liso Vascular Limite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2015 Tipo de documento: Article