Your browser doesn't support javascript.
loading
Dual Stress and Thermally Driven Mechanical Properties of the Same Organic Crystal: 2,6-Dichlorobenzylidene-4-fluoro-3-nitroaniline.
Ghosh, Soumyajit; Mishra, Manish Kumar; Ganguly, Somnath; Desiraju, Gautam R.
Afiliação
  • Ghosh S; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
  • Mishra MK; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
  • Ganguly S; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
  • Desiraju GR; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
J Am Chem Soc ; 137(31): 9912-21, 2015 Aug 12.
Article em En | MEDLINE | ID: mdl-26192986
An elastic organic crystal, 2,6-dichlorobenzylidine-4-fluoro-3-nitroaniline (DFNA), which also shows thermosalient behavior, is studied. The presence of these two distinct properties in the same crystal is unusual and unprecedented because they follow respectively from isotropy and anisotropy in the crystal packing. Therefore, while both properties lead from the crystal structure, the mechanisms for bending and thermosalience are quite independent of one another. Crystals of the low-temperature (α) form of the title compound are bent easily without any signs of fracture with the application of deforming stress, and this bending is within the elastic limit. The crystal structure of the α-form was determined (P21/c, Z = 4, a = 3.927(7) Å, b = 21.98(4) Å, c = 15.32(3) Å). There is an irreversible phase transition at 138 °C of this form to the high-temperature ß-form followed by melting at 140 °C. Variable-temperature X-ray powder diffraction was used to investigate the structural changes across the phase transition and, along with an FTIR study, establishes the structure of the ß-form. A possible rationale for strain build-up is given. Thermosalient behavior arises from anisotropic changes in the three unit cell parameters across the phase transition, notably an increase in the b axis parameter from 21.98 to 22.30 Å. A rationale is provided for the existence of both elasticity and thermosalience in the same crystal. FTIR studies across the phase transition reveal important mechanistic insights: (i) increased π···π repulsions along [100] lead to expansion along the a axis; (ii) change in alignment of C-Cl and NO2 groups result from density changes; and (iii) competition between short-range repulsive (π···π) interactions and long-range attractive dipolar interactions (C-Cl and NO2) could lie at the origin of the existence of two distinctive properties.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Índia