Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.
BMC Bioinformatics
; 16 Suppl 12: S1, 2015.
Article
em En
| MEDLINE
| ID: mdl-26329681
BACKGROUND: It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. RESULTS: In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. CONCLUSIONS: Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible at http://biomed.zzuli.edu.cn/bioinfo/gpos-ecc-mploc/ and http://biomed.zzuli.edu.cn/bioinfo/gneg-ecc-mploc/ respectively.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Bactérias
/
Espaço Intracelular
/
Ontologia Genética
/
Bactérias Gram-Negativas
/
Bactérias Gram-Positivas
Idioma:
En
Revista:
BMC Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2015
Tipo de documento:
Article