Your browser doesn't support javascript.
loading
Dynamic membrane protein topological switching upon changes in phospholipid environment.
Vitrac, Heidi; MacLean, David M; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William.
Afiliação
  • Vitrac H; Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Health Science Center-Medical School, Houston, TX 77030 heidi.vitrac@uth.tmc.edu william.dowhan@uth.tmc.edu.
  • MacLean DM; Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Health Science Center-Medical School, Houston, TX 77030.
  • Jayaraman V; Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Health Science Center-Medical School, Houston, TX 77030.
  • Bogdanov M; Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Health Science Center-Medical School, Houston, TX 77030.
  • Dowhan W; Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Health Science Center-Medical School, Houston, TX 77030 heidi.vitrac@uth.tmc.edu william.dowhan@uth.tmc.edu.
Proc Natl Acad Sci U S A ; 112(45): 13874-9, 2015 Nov 10.
Article em En | MEDLINE | ID: mdl-26512118
ABSTRACT
A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Proteínas de Membrana Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Proteínas de Membrana Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2015 Tipo de documento: Article