Your browser doesn't support javascript.
loading
From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.
Colombrita, Claudia; Onesto, Elisa; Buratti, Emanuele; de la Grange, Pierre; Gumina, Valentina; Baralle, Francisco E; Silani, Vincenzo; Ratti, Antonia.
Afiliação
  • Colombrita C; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
  • Onesto E; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
  • Buratti E; International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy.
  • de la Grange P; GenoSplice, Hopital Pitié-Salpêtrière, Paris 75013, France.
  • Gumina V; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
  • Baralle FE; International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy.
  • Silani V; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
  • Ratti A; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy. Electronic address: antonia.ratti@unimi.it.
Biochim Biophys Acta ; 1849(12): 1398-410, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26514432
ABSTRACT
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA Mensageiro / RNA Neoplásico / Precursores de RNA / Regulação Neoplásica da Expressão Gênica / Proteoma / Proteína FUS de Ligação a RNA / Proteínas de Ligação a DNA / Transcriptoma / Proteínas de Neoplasias / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA Mensageiro / RNA Neoplásico / Precursores de RNA / Regulação Neoplásica da Expressão Gênica / Proteoma / Proteína FUS de Ligação a RNA / Proteínas de Ligação a DNA / Transcriptoma / Proteínas de Neoplasias / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Itália