Your browser doesn't support javascript.
loading
Cathelicidins positively regulate pancreatic ß-cell functions.
Sun, Jia; Xu, Meng; Ortsäter, Henrik; Lundeberg, Erik; Juntti-Berggren, Lisa; Chen, Yong Q; Haeggström, Jesper Z; Gudmundsson, Gudmundur H; Diana, Julien; Agerberth, Birgitta.
Afiliação
  • Sun J; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Xu M; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Ortsäter H; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Lundeberg E; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Juntti-Berggren L; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Chen YQ; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Haeggström JZ; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Gudmundsson GH; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Diana J; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
  • Agerberth B; *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science
FASEB J ; 30(2): 884-94, 2016 Feb.
Article em En | MEDLINE | ID: mdl-26527065
ABSTRACT
Cathelicidins are pleiotropic antimicrobial peptides largely described for innate antimicrobial defenses and, more recently, immunomodulation. They are shown to modulate a variety of immune or nonimmune host cell responses. However, how cathelicidins are expressed by ß cells and modulate ß-cell functions under steady-state or proinflammatory conditions are unknown. We find that cathelicidin-related antimicrobial peptide (CRAMP) is constitutively expressed by rat insulinoma ß-cell clone INS-1 832/13. CRAMP expression is inducible by butyrate or phenylbutyric acid and its secretion triggered upon inflammatory challenges by IL-1ß or LPS. CRAMP promotes ß-cell survival in vitro via the epidermal growth factor receptor (EGFR) and by modulating expression of antiapoptotic Bcl-2 family proteins p-Bad, Bcl-2, and Bcl-xL. Also via EGFR, CRAMP stimulates glucose-stimulated insulin secretion ex vivo by rat islets. A similar effect is observed in diabetes-prone nonobese diabetic (NOD) mice. Additional investigation under inflammatory conditions reveals that CRAMP modulates inflammatory responses and ß-cell apoptosis, as measured by prostaglandin E2 production, cyclooxygenases (COXs), and caspase activation. Finally, CRAMP-deficient cnlp(-/-) mice exhibit defective insulin secretion, and administration of CRAMP to prediabetic NOD mice improves blood glucose clearance upon glucose challenge. Our finding suggests that cathelicidins positively regulate ß-cell functions and may be potentially used for intervening ß-cell dysfunction-associated diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Células Secretoras de Insulina Limite: Animals Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Células Secretoras de Insulina Limite: Animals Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article