Your browser doesn't support javascript.
loading
Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields.
Gerber, S; Jang, H; Nojiri, H; Matsuzawa, S; Yasumura, H; Bonn, D A; Liang, R; Hardy, W N; Islam, Z; Mehta, A; Song, S; Sikorski, M; Stefanescu, D; Feng, Y; Kivelson, S A; Devereaux, T P; Shen, Z-X; Kao, C-C; Lee, W-S; Zhu, D; Lee, J-S.
Afiliação
  • Gerber S; Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
  • Jang H; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Nojiri H; Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan.
  • Matsuzawa S; Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan.
  • Yasumura H; Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan.
  • Bonn DA; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
  • Liang R; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
  • Hardy WN; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
  • Islam Z; The Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
  • Mehta A; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Song S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Sikorski M; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Stefanescu D; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Feng Y; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Kivelson SA; Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
  • Devereaux TP; Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
  • Shen ZX; Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA. Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
  • Kao CC; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Lee WS; Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA. dlzhu@slac.stanford.edu leews@stanford.edu jslee@slac.stanford.edu.
  • Zhu D; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. dlzhu@slac.stanford.edu leews@stanford.edu jslee@slac.stanford.edu.
  • Lee JS; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. dlzhu@slac.stanford.edu leews@stanford.edu jslee@slac.stanford.edu.
Science ; 350(6263): 949-52, 2015 Nov 20.
Article em En | MEDLINE | ID: mdl-26541608
ABSTRACT
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured with x-ray scattering at zero and low fields. We combined a pulsed magnet with an x-ray free-electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields of up to 28 tesla. While the zero-field CDW order, which develops at temperatures below ~150 kelvin, is essentially two dimensional, at lower temperature and beyond 15 tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW appears around the zero-field superconducting transition temperature; in contrast, the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos