Your browser doesn't support javascript.
loading
Mannan-binding lectin at supraphysiological concentrations inhibits differentiation of dendritic cells from human CD14+ monocytes.
Xu, Xiao-Ying; Li, Hui-Jie; Zhang, Li-Yun; Lu, Xiao; Zuo, Da-Ming; Shan, Gui-Qiu; Xu, Tian-Yu; Chen, Zheng-Liang.
Afiliação
  • Xu XY; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Li HJ; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Zhang LY; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Lu X; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Zuo DM; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Shan GQ; Guangzhou General Hospital of Guangzhou Military Command, Liuhua Road 111, Guangzhou, Guangdong, China.
  • Xu TY; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
  • Chen ZL; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Avenue North 1838, Guangdong, China.
Microbiol Immunol ; 59(12): 724-34, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26564804
ABSTRACT
Mannan-binding lectin (MBL), a circulating C-type lectin, is an important member of the defense collagen family. It exhibits a high potential for recognizing broad categories of pathogen-associated molecular patterns and initiating complement cascade responses. DCs are well-known specialist antigen-presenting cells that significantly trigger specific T cell-mediated immune responses. In our previous study, it was observed that high concentrations of MBL significantly attenuate LPS-induced maturation of monocyte-derived DCs (MoDCs). In the current study, it was postulated that MBL at similar supraphysiological concentrations would affect early differentiation of MoDCs in some way. CD14(+) monocytes from human peripheral blood mononuclear cells were cultured with granulocyte-macrophage colony-stimulating factor and IL-4 in the presence or absence of physiological (1 µg/mL) and supraphysiological concentrations (20 µg/mL) of MBL protein, respectively. Phenotypic analysis indicated that the differentiated DCs incubated with high concentrations of MBL expressed MHC class II and costimulatory molecules (e.g., CD80 and CD40) more weakly than did control groups. The secretion of IL-10 and IL-6 increased markedly, whereas their mixed lymphocyte reaction-stimulating capacity decreased. Members of the signal transducer and activator of transcription family were also found to be differentially regulated. Thus, beyond the role of MBL as an opsonin, our data reveal a possible inhibitory effect of MBL at high concentrations in monocyte-DC transition, which probably provides one way of regulating adaptive immune responses by strict regulation of DCs, making MBL a better prospect for controlling relevant pathological events such as autoimmune diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Dendríticas / Leucócitos Mononucleares / Monócitos / Receptores de Lipopolissacarídeos / Lectina de Ligação a Manose Limite: Humans Idioma: En Revista: Microbiol Immunol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Dendríticas / Leucócitos Mononucleares / Monócitos / Receptores de Lipopolissacarídeos / Lectina de Ligação a Manose Limite: Humans Idioma: En Revista: Microbiol Immunol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: China