Your browser doesn't support javascript.
loading
Group-regularized individual prediction: theory and application to pain.
Lindquist, Martin A; Krishnan, Anjali; López-Solà, Marina; Jepma, Marieke; Woo, Choong-Wan; Koban, Leonie; Roy, Mathieu; Atlas, Lauren Y; Schmidt, Liane; Chang, Luke J; Reynolds Losin, Elizabeth A; Eisenbarth, Hedwig; Ashar, Yoni K; Delk, Elizabeth; Wager, Tor D.
Afiliação
  • Lindquist MA; Johns Hopkins University, USA.
  • Krishnan A; University of Colorado Boulder, USA; Brooklyn College of the City University of New York, USA.
  • López-Solà M; University of Colorado Boulder, USA.
  • Jepma M; University of Colorado Boulder, USA.
  • Woo CW; University of Colorado Boulder, USA.
  • Koban L; University of Colorado Boulder, USA.
  • Roy M; Concordia University, USA.
  • Atlas LY; National Center for Complementary and Integrative Health, National Institutes of Health, USA.
  • Schmidt L; INSEAD, France; Cognitive Neuroscience Laboratory, INSERM U960, Department of Cognitive Sciences, Ecole Normale Supérieure, Paris, France.
  • Chang LJ; University of Colorado Boulder, USA.
  • Reynolds Losin EA; University of Colorado Boulder, USA; University of Miami, USA.
  • Eisenbarth H; University of Colorado Boulder, USA.
  • Ashar YK; University of Colorado Boulder, USA.
  • Delk E; University of Colorado Boulder, USA.
  • Wager TD; University of Colorado Boulder, USA. Electronic address: tor.wager@colorado.edu.
Neuroimage ; 145(Pt B): 274-287, 2017 01 15.
Article em En | MEDLINE | ID: mdl-26592808
Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Mapeamento Encefálico / Reconhecimento Automatizado de Padrão / Imageamento por Ressonância Magnética / Biomarcadores / Percepção da Dor / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Mapeamento Encefálico / Reconhecimento Automatizado de Padrão / Imageamento por Ressonância Magnética / Biomarcadores / Percepção da Dor / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos