Your browser doesn't support javascript.
loading
Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway.
Su, Fengtao; Bhattacharya, Souparno; Abdisalaam, Salim; Mukherjee, Shibani; Yajima, Hirohiko; Yang, Yanyong; Mishra, Ritu; Srinivasan, Kalayarasan; Ghose, Subroto; Chen, David J; Yannone, Steven M; Asaithamby, Aroumougame.
Afiliação
  • Su F; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Bhattacharya S; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Abdisalaam S; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Mukherjee S; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Yajima H; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Yang Y; Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.
  • Mishra R; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Srinivasan K; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Ghose S; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Chen DJ; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Yannone SM; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Asaithamby A; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
Oncotarget ; 7(1): 46-65, 2016 Jan 05.
Article em En | MEDLINE | ID: mdl-26695548
ABSTRACT
Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ubiquitinas / Transdução de Sinais / Complexo de Endopeptidases do Proteassoma / Replicação do DNA / Exodesoxirribonucleases / RecQ Helicases Limite: Humans Idioma: En Revista: Oncotarget Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ubiquitinas / Transdução de Sinais / Complexo de Endopeptidases do Proteassoma / Replicação do DNA / Exodesoxirribonucleases / RecQ Helicases Limite: Humans Idioma: En Revista: Oncotarget Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos