Your browser doesn't support javascript.
loading
Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain.
Kähne, Thilo; Richter, Sandra; Kolodziej, Angela; Smalla, Karl-Heinz; Pielot, Rainer; Engler, Alexander; Ohl, Frank W; Dieterich, Daniela C; Seidenbecher, Constanze; Tischmeyer, Wolfgang; Naumann, Michael; Gundelfinger, Eckart D.
Afiliação
  • Kähne T; Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany.
  • Richter S; Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany.
  • Kolodziej A; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.
  • Smalla KH; Institute of Biology, Otto von Guericke University, Magdeburg, Germany.
  • Pielot R; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.
  • Engler A; Center for Behavioral Brain Sciences, Magdeburg, Germany.
  • Ohl FW; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.
  • Dieterich DC; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.
  • Seidenbecher C; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.
  • Tischmeyer W; Institute of Biology, Otto von Guericke University, Magdeburg, Germany.
  • Naumann M; Center for Behavioral Brain Sciences, Magdeburg, Germany.
  • Gundelfinger ED; Center for Behavioral Brain Sciences, Magdeburg, Germany.
J Neurochem ; 138(1): 124-38, 2016 07.
Article em En | MEDLINE | ID: mdl-27062398
ABSTRACT
Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortexhippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Estimulação Acústica / Encéfalo / Regulação da Expressão Gênica / Proteoma / Aprendizagem por Discriminação Limite: Animals Idioma: En Revista: J Neurochem Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Estimulação Acústica / Encéfalo / Regulação da Expressão Gênica / Proteoma / Aprendizagem por Discriminação Limite: Animals Idioma: En Revista: J Neurochem Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha