Your browser doesn't support javascript.
loading
Orai1 mediates osteogenic differentiation via BMP signaling pathway in bone marrow mesenchymal stem cells.
Lee, Sung Hee; Park, Yongtae; Song, Minju; Srikanth, Sonal; Kim, Sol; Kang, Mo K; Gwack, Yousang; Park, No-Hee; Kim, Reuben H; Shin, Ki-Hyuk.
Afiliação
  • Lee SH; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
  • Park Y; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
  • Song M; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
  • Srikanth S; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  • Kim S; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
  • Kang MK; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA.
  • Gwack Y; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  • Park NH; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  • Kim RH; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA. Electronic address: rkim@dentistry.ucla.edu.
  • Shin KH; The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA. Electronic address: kshin@dentistry.ucla.edu.
Biochem Biophys Res Commun ; 473(4): 1309-1314, 2016 05 13.
Article em En | MEDLINE | ID: mdl-27086849
ABSTRACT
Orai1 is a pore-subunit of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel that mediates Ca(2+) influx in most non-excitable cells via store-operated Ca(2+) entry (SOCE) mechanism. We previously demonstrated that Orai1 is involved in mediating osteogenic potential of mesenchymal stem cells (MSCs), but the underlying mechanism of this function remains unknown. Here, we report that Orai1 mediates osteogenic differentiation via bone morphogenic protein (BMP) signaling pathway in bone marrow MSCs (BMSCs). In osteogenic conditions, BMSCs derived from wild-type mice underwent osteoblastic differentiation and induced mineralization as demonstrated by increased alkaline phosphatase activity and alizarin red S staining, respectively. The expression of Runx2, a master regulator of osteoblast differentiation, and osteogenic differentiation markers were markedly increased in wild-type BMSCs under osteogenic conditions. In contrast, osteogenic conditions failed to induce such effects in BMSCs derived from Orai1-deficient (Orai1(-/-)) mice, indicating that Orai1 is, in part, necessary for osteogenic differentiation of MSCs. We also found that BMP2 successfully induced phosphorylation of Smad1/5/8, the immediate effector molecules of BMP signaling, in wild-type BMSCs, but failed to do so in Orai1(-/-) BMSCs. Downstream target genes of BMP signaling pathway were consistently increased by osteogenic conditions in wild-type BMSCs, but not in Orai1(-/-) BMSCs, suggesting a novel molecular link between Orai1 and BMP signaling pathway in the osteogenic differentiation process. Further functional studies demonstrated that activation of BMP signaling rescues osteogenic differentiation capacity of Orai1(-/-) BMSCs. In conclusion, Orai1 regulates osteogenic differentiation through BMP signaling, and the Orai1-BMP signaling may be a possible therapeutic target for treating bone-related diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Calcificação Fisiológica / Transdução de Sinais / Proteínas Morfogenéticas Ósseas / Células-Tronco Mesenquimais Limite: Animals Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Calcificação Fisiológica / Transdução de Sinais / Proteínas Morfogenéticas Ósseas / Células-Tronco Mesenquimais Limite: Animals Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos