Your browser doesn't support javascript.
loading
Extensive phosphorylation of AMPA receptors in neurons.
Diering, Graham H; Heo, Seok; Hussain, Natasha K; Liu, Bian; Huganir, Richard L.
Afiliação
  • Diering GH; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Heo S; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Hussain NK; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Liu B; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
  • Huganir RL; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205 rhuganir@jhmi.edu.
Proc Natl Acad Sci U S A ; 113(33): E4920-7, 2016 08 16.
Article em En | MEDLINE | ID: mdl-27482106
Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein-protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1-containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de AMPA / Neurônios Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de AMPA / Neurônios Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2016 Tipo de documento: Article