Your browser doesn't support javascript.
loading
Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures.
Litman, Yair E; Videla, Pablo E; Rodriguez, Javier; Laria, Daniel.
Afiliação
  • Litman YE; Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina.
  • Videla PE; Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina.
  • Rodriguez J; Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica , Avenida Libertador 8250, 1429 Buenos Aires, Argentina.
  • Laria D; ECyT, UNSAM , Martín de Irigoyen 3100, 1650 San Martín, Pcia. de Buenos Aires, Argentina.
J Phys Chem A ; 120(36): 7213-24, 2016 Sep 15.
Article em En | MEDLINE | ID: mdl-27533318
ABSTRACT
We present molecular dynamics simulation results describing proton/deuteron exchange equilibria along hydrogen bonds at the vicinity of HX acids (X = F, I) in aqueous clusters at low temperatures. To allow for an adequate description of proton transfer processes, our simulation scheme resorted on the implementation of a multistate empirical valence bond hamiltonian coupled to a path integral scheme to account for effects derived from nuclear quantum fluctuations. We focused attention on clusters comprising a number of water molecules close to the threshold values necessary to stabilize contact-ion-pairs. For X = F, our results reveal a clear propensity of the heavy isotope to lie at the bond bridging the halide to the nearest water molecule. Contrasting, for X = I, the thermodynamic stability is reversed and the former connectivity is preferentially articulated via the light isotope. These trends remain valid for undissociated and ionic descriptions of the stable valence bond states. The preferences are rationalized in terms of differences in the quantum kinetic energies of the isotopes which, in turn, reflect the extent of the local spatial confinements prevailing along the different hydrogen bonds in the clusters. In most cases, these features are also clearly reflected in the characteristics of the corresponding stretching bands of the simulated infrared spectra. This opens interesting possibilities to gauge the extent of the isotopic thermodynamic stabilizations and the strengths of the different hydrogen bonds by following the magnitudes and shifts of the spectral signals in temperature-controlled experiments, performed on mixed clusters combining H2O and HOD.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Argentina