Your browser doesn't support javascript.
loading
Assessing Variations in Areal Organization for the Intrinsic Brain: From Fingerprints to Reliability.
Xu, Ting; Opitz, Alexander; Craddock, R Cameron; Wright, Margaret J; Zuo, Xi-Nian; Milham, Michael P.
Afiliação
  • Xu T; Key Laboratory of Behavioral Sciences and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing100101, China.
  • Opitz A; Center for the Developing Brain, Child Mind Institute, New York, NY10022, USA.
  • Craddock RC; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY10962, USA.
  • Wright MJ; Center for the Developing Brain, Child Mind Institute, New York, NY10022, USA.
  • Zuo XN; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY10962, USA.
  • Milham MP; Center for the Developing Brain, Child Mind Institute, New York, NY10022, USA.
Cereb Cortex ; 26(11): 4192-4211, 2016 Oct 01.
Article em En | MEDLINE | ID: mdl-27600846
ABSTRACT
Resting state fMRI (R-fMRI) is a powerful in-vivo tool for examining the functional architecture of the human brain. Recent studies have demonstrated the ability to characterize transitions between functionally distinct cortical areas through the mapping of gradients in intrinsic functional connectivity (iFC) profiles. To date, this novel approach has primarily been applied to iFC profiles averaged across groups of individuals, or in one case, a single individual scanned multiple times. Here, we used a publically available R-fMRI dataset, in which 30 healthy participants were scanned 10 times (10 min per session), to investigate differences in full-brain transition profiles (i.e., gradient maps, edge maps) across individuals, and their reliability. 10-min R-fMRI scans were sufficient to achieve high accuracies in efforts to "fingerprint" individuals based upon full-brain transition profiles. Regarding test-retest reliability, the image-wise intraclass correlation coefficient (ICC) was moderate, and vertex-level ICC varied depending on region; larger durations of data yielded higher reliability scores universally. Initial application of gradient-based methodologies to a recently published dataset obtained from twins suggested inter-individual variation in areal profiles might have genetic and familial origins. Overall, these results illustrate the utility of gradient-based iFC approaches for studying inter-individual variation in brain function.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China