Your browser doesn't support javascript.
loading
Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness.
Clarke, Richard W; Novak, Pavel; Zhukov, Alexander; Tyler, Eleanor J; Cano-Jaimez, Marife; Drews, Anna; Richards, Owen; Volynski, Kirill; Bishop, Cleo; Klenerman, David.
Afiliação
  • Clarke RW; University Chemical Laboratories, Lensfield Road, Cambridge, CB2 1EW, UK. rwc25@cam.ac.uk dk10012@cam.ac.uk.
Soft Matter ; 12(38): 7953-8, 2016 Oct 14.
Article em En | MEDLINE | ID: mdl-27604678
Directly examining subcellular mechanics whilst avoiding excessive strain of a live cell requires the precise control of light stress on very small areas, which is fundamentally difficult. Here we use a glass nanopipet out of contact with the plasma membrane to both exert the stress on the cell and also accurately monitor cellular compression. This allows the mapping of cell stiffness at a lateral resolution finer than 100 nm. We calculate the stress a nanopipet exerts on a cell as the sum of the intrinsic pressure between the tip face and the plasma membrane plus its direct pressure on any glycocalyx, both evaluated from the gap size in terms of the ion current decrease. A survey of cell types confirms that an intracellular pressure of approximately 120 Pa begins to detach the plasma membrane from the cytoskeleton and reveals that the first 0.66 ± 0.09 µm of compression of a neuron cell body is much softer than previous methods have been able to detect.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Membrana Celular / Microscopia Limite: Animals / Humans Idioma: En Revista: Soft Matter Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Membrana Celular / Microscopia Limite: Animals / Humans Idioma: En Revista: Soft Matter Ano de publicação: 2016 Tipo de documento: Article