Your browser doesn't support javascript.
loading
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.
Kim, Jimi; McMillan, Elizabeth; Kim, Hyun Seok; Venkateswaran, Niranjan; Makkar, Gurbani; Rodriguez-Canales, Jaime; Villalobos, Pamela; Neggers, Jasper Edgar; Mendiratta, Saurabh; Wei, Shuguang; Landesman, Yosef; Senapedis, William; Baloglu, Erkan; Chow, Chi-Wan B; Frink, Robin E; Gao, Boning; Roth, Michael; Minna, John D; Daelemans, Dirk; Wistuba, Ignacio I; Posner, Bruce A; Scaglioni, Pier Paolo; White, Michael A.
Afiliação
  • Kim J; Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA.
  • McMillan E; Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Kim HS; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
  • Venkateswaran N; Internal Medicine, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Makkar G; Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Rodriguez-Canales J; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA.
  • Villalobos P; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA.
  • Neggers JE; KU Leuven Department of Microbiology and Immunology, 3000 Leuven, Belgium.
  • Mendiratta S; Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Wei S; Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Landesman Y; Karyopharm Therapeutics, Newton, Massachusetts 02459, USA.
  • Senapedis W; Karyopharm Therapeutics, Newton, Massachusetts 02459, USA.
  • Baloglu E; Karyopharm Therapeutics, Newton, Massachusetts 02459, USA.
  • Chow CB; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA.
  • Frink RE; Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Gao B; Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Roth M; Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Minna JD; Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Daelemans D; KU Leuven Department of Microbiology and Immunology, 3000 Leuven, Belgium.
  • Wistuba II; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA.
  • Posner BA; Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA.
  • Scaglioni PP; Internal Medicine, UTSW Medical Center, Dallas, Texas 75390, USA.
  • White MA; Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA.
Nature ; 538(7623): 114-117, 2016 Oct 06.
Article em En | MEDLINE | ID: mdl-27680702
ABSTRACT
The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5-Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1-TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.
Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos; Núcleo Celular/metabolismo; Carioferinas/antagonistas & inibidores; Carioferinas/metabolismo; Neoplasias Pulmonares/genética; Neoplasias Pulmonares/metabolismo; Proteínas Proto-Oncogênicas p21(ras)/genética; Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores; Receptores Citoplasmáticos e Nucleares/metabolismo; Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores; Proteínas Adaptadoras de Transdução de Sinal/metabolismo; Animais; Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico; Carcinoma Pulmonar de Células não Pequenas/genética; Carcinoma Pulmonar de Células não Pequenas/metabolismo; Carcinoma Pulmonar de Células não Pequenas/patologia; Linhagem Celular Tumoral; Núcleo Celular/efeitos dos fármacos; Proliferação de Células/efeitos dos fármacos; Sobrevivência Celular/efeitos dos fármacos; Sobrevivência Celular/genética; Proteínas de Ligação a DNA/antagonistas & inibidores; Proteínas de Ligação a DNA/metabolismo; Feminino; Proteínas Relacionadas à Folistatina/genética; Genes Letais/genética; Via de Sinalização Hippo; Humanos; Neoplasias Pulmonares/tratamento farmacológico; Neoplasias Pulmonares/patologia; Camundongos; Mutação; Inibidor de NF-kappaB alfa/metabolismo; NF-kappa B/antagonistas & inibidores; NF-kappa B/metabolismo; Proteínas Nucleares/antagonistas & inibidores; Proteínas Nucleares/metabolismo; Fosfoproteínas/antagonistas & inibidores; Fosfoproteínas/metabolismo; Porfirinas/farmacologia; Proteínas Serina-Treonina Quinases/metabolismo; Interferência de RNA; RNA Interferente Pequeno; Transdução de Sinais; Fatores de Transcrição de Domínio TEA; Fatores de Transcrição/antagonistas & inibidores; Fatores de Transcrição/metabolismo; Verteporfina; Ensaios Antitumorais Modelo de Xenoenxerto; Proteínas de Sinalização YAP; Proteína Exportina 1

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Núcleo Celular / Proteínas Proto-Oncogênicas p21(ras) / Receptores Citoplasmáticos e Nucleares / Transporte Ativo do Núcleo Celular / Carioferinas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Núcleo Celular / Proteínas Proto-Oncogênicas p21(ras) / Receptores Citoplasmáticos e Nucleares / Transporte Ativo do Núcleo Celular / Carioferinas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos