Your browser doesn't support javascript.
loading
Computational Modeling of ß-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches.
Subramanian, Govindan; Ramsundar, Bharath; Pande, Vijay; Denny, Rajiah Aldrin.
Afiliação
  • Subramanian G; VMRD Global Discovery, Zoetis , 333 Portage Street, Kalamazoo, Michigan 49007, United States.
  • Denny RA; Worldwide Medicinal Chemistry, Pfizer Inc. , 610 Main Street, Cambridge, Massachusetts 02139, United States.
J Chem Inf Model ; 56(10): 1936-1949, 2016 10 24.
Article em En | MEDLINE | ID: mdl-27689393
The binding affinities (IC50) reported for diverse structural and chemical classes of human ß-secretase 1 (BACE-1) inhibitors in literature were modeled using multiple in silico ligand based modeling approaches and statistical techniques. The descriptor space encompasses simple binary molecular fingerprint, one- and two-dimensional constitutional, physicochemical, and topological descriptors, and sophisticated three-dimensional molecular fields that require appropriate structural alignments of varied chemical scaffolds in one universal chemical space. The affinities were modeled using qualitative classification or quantitative regression schemes involving linear, nonlinear, and deep neural network (DNN) machine-learning methods used in the scientific literature for quantitative-structure activity relationships (QSAR). In a departure from tradition, ∼20% of the chemically diverse data set (205 compounds) was used to train the model with the remaining ∼80% of the structural and chemical analogs used as part of an external validation (1273 compounds) and prospective test (69 compounds) sets respectively to ascertain the model performance. The machine-learning methods investigated herein performed well in both the qualitative classification (∼70% accuracy) and quantitative IC50 predictions (RMSE ∼ 1 log). The success of the 2D descriptor based machine learning approach when compared against the 3D field based technique pursued for hBACE-1 inhibitors provides a strong impetus for systematically applying such methods during the lead identification and optimization efforts for other protein families as well.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Aspártico Endopeptidases / Secretases da Proteína Precursora do Amiloide / Descoberta de Drogas Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Aspártico Endopeptidases / Secretases da Proteína Precursora do Amiloide / Descoberta de Drogas Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos