Your browser doesn't support javascript.
loading
Laser-Accelerated Ions from a Shock-Compressed Gas Foil.
Helle, M H; Gordon, D F; Kaganovich, D; Chen, Y; Palastro, J P; Ting, A.
Afiliação
  • Helle MH; Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375, USA.
  • Gordon DF; Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375, USA.
  • Kaganovich D; Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375, USA.
  • Chen Y; Research Support Instruments, Lanham, Maryland 20706, USA.
  • Palastro JP; Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375, USA.
  • Ting A; Research Support Instruments, Lanham, Maryland 20706, USA.
Phys Rev Lett ; 117(16): 165001, 2016 Oct 14.
Article em En | MEDLINE | ID: mdl-27792379
We present results of energetic laser-ion acceleration from a tailored, near solid density gas target. Colliding hydrodynamic shocks compress a pure hydrogen gas jet into a 70 µm thick target prior to the arrival of the ultraintense laser pulse. A density scan reveals the transition from a regime characterized by a wide angle, low-energy beam (target normal sheath acceleration) to one of a more focused beam with a high-energy halo (magnetic vortex acceleration). In the latter case, three-dimensional simulations show the formation of a Z pinch driven by the axial current resulting from laser wakefield accelerated electrons. Ions at the rear of the target are then accelerated by a combination of space charge fields from accelerated electrons and Coulombic repulsion as the pinch dissipates.
Buscar no Google
Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos