Your browser doesn't support javascript.
loading
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.
Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.
Afiliação
  • Schmidt F; Cluster of Excellence for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbrücken, 66123, Germany.
  • Gasparoni N; Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Gasparoni G; Department of Genetics, University of Saarland, Saarbrücken, 66123, Germany.
  • Gianmoena K; Department of Genetics, University of Saarland, Saarbrücken, 66123, Germany.
  • Cadenas C; Leibniz Research Centre for Working Environment and Human Factors IfADo, Dortmund, 44139, Germany.
  • Polansky JK; Leibniz Research Centre for Working Environment and Human Factors IfADo, Dortmund, 44139, Germany.
  • Ebert P; Experimental Rheumatology, German Rheumatism Research Centre, Berlin, 10117, Germany.
  • Nordström K; Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Barann M; International Max Planck Research School for Computer Science, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Sinha A; Department of Genetics, University of Saarland, Saarbrücken, 66123, Germany.
  • Fröhler S; Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, 24105, Germany.
  • Xiong J; Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, 24105, Germany.
  • Dehghani Amirabad A; Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, 13092, Germany.
  • Behjati Ardakani F; Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, 13092, Germany.
  • Hutter B; Cluster of Excellence for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbrücken, 66123, Germany.
  • Zipprich G; Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Felder B; International Max Planck Research School for Computer Science, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Eils J; Cluster of Excellence for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbrücken, 66123, Germany.
  • Brors B; Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Germany.
  • Chen W; Applied Bioinformatics, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany.
  • Hengstler JG; Data Management and Genomics IT, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany.
  • Hamann A; Data Management and Genomics IT, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany.
  • Lengauer T; Data Management and Genomics IT, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany.
  • Rosenstiel P; Applied Bioinformatics, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany.
  • Walter J; Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, 13092, Germany.
  • Schulz MH; Leibniz Research Centre for Working Environment and Human Factors IfADo, Dortmund, 44139, Germany.
Nucleic Acids Res ; 45(1): 54-66, 2017 01 09.
Article em En | MEDLINE | ID: mdl-27899623
The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Cromatina / Histonas / Regulação da Expressão Gênica / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / DNA / Cromatina / Histonas / Regulação da Expressão Gênica / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha