Your browser doesn't support javascript.
loading
A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.
IEEE Trans Biomed Eng ; 64(10): 2431-2438, 2017 10.
Article em En | MEDLINE | ID: mdl-28029613
ABSTRACT
GOAL Intracochlear sound pressure (ICSP) measurements are limited by the small dimensions of the human inner ear and the requirements imposed by the liquid medium. A robust intracochlear acoustic receiver (ICAR) for repeated use with a simple data acquisition system that provides the required high sensitivity and small dimensions does not yet exist. The work described in this report aims to fill this gap and presents a new microelectromechanical systems (MEMS) condenser microphone (CMIC)-based ICAR concept suitable for ICSP measurements in human temporal bones.

METHODS:

The ICAR head consisted of a passive protective diaphragm (PD) sealing the MEMS CMIC against the liquid medium, enabling insertion into the inner ear. The components of the MEMS CMIC-based ICAR were expressed by a lumped element model (LEM) and compared to the performance of successfully fabricated ICARs.

RESULTS:

Good agreement was achieved between the LEM and the measurements with different sizes of the PD. The ICSP measurements in a human cadaver temporal bone yielded data in agreement with the literature.

CONCLUSION:

Our results confirm that the presented MEMS CMIC-based ICAR is a promising technology for measuring ICSP in human temporal bones in the audible frequency range.

SIGNIFICANCE:

A sensor for evaluation of the biomechanical hearing process by quantification of ICSP is presented. The concept has potential as an acoustic receiver in totally implantable cochlear implants.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrografia do Som / Transdutores / Implantes Cocleares / Cóclea / Sistemas Microeletromecânicos / Manometria Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Biomed Eng Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrografia do Som / Transdutores / Implantes Cocleares / Cóclea / Sistemas Microeletromecânicos / Manometria Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Biomed Eng Ano de publicação: 2017 Tipo de documento: Article