Your browser doesn't support javascript.
loading
Rare variant association test with multiple phenotypes.
Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung.
Afiliação
  • Lee S; Department of Statistics, Seoul National University, Seoul, Korea.
  • Won S; Graduate School of Public Health, Seoul National University, Seoul, Korea.
  • Kim YJ; Division of Structural and Functional Genomics, Korean National Institute of Health, Osong, Chungchungbuk-do, Korea.
  • Kim Y; Department of Statistics, Seoul National University, Seoul, Korea.
  • Kim BJ; Division of Structural and Functional Genomics, Korean National Institute of Health, Osong, Chungchungbuk-do, Korea.
  • Park T; Department of Statistics, Seoul National University, Seoul, Korea.
Genet Epidemiol ; 41(3): 198-209, 2017 04.
Article em En | MEDLINE | ID: mdl-28039885
ABSTRACT
Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of "missing heritability," likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiple correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multivariant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used sequence kernel association test (SKAT) for a single phenotype. We applied MAAUSS to whole exome sequencing (WES) data from a Korean population of 1,058 subjects to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenótipo / Variação Genética / Predisposição Genética para Doença / Estudo de Associação Genômica Ampla / Sequenciamento de Nucleotídeos em Larga Escala / Hepatopatias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Genet Epidemiol Assunto da revista: EPIDEMIOLOGIA / GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenótipo / Variação Genética / Predisposição Genética para Doença / Estudo de Associação Genômica Ampla / Sequenciamento de Nucleotídeos em Larga Escala / Hepatopatias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Genet Epidemiol Assunto da revista: EPIDEMIOLOGIA / GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article