Your browser doesn't support javascript.
loading
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Chronis, Constantinos; Fiziev, Petko; Papp, Bernadett; Butz, Stefan; Bonora, Giancarlo; Sabri, Shan; Ernst, Jason; Plath, Kathrin.
Afiliação
  • Chronis C; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Fiziev P; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Papp B; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Butz S; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Bonora G; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Sabri S; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Ernst J; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
  • Plath K; David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
Cell ; 168(3): 442-459.e20, 2017 01 26.
Article em En | MEDLINE | ID: mdl-28111071
Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Reprogramação Celular Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Reprogramação Celular Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos