Your browser doesn't support javascript.
loading
Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction.
Segler, Marwin H S; Waller, Mark P.
Afiliação
  • Segler MHS; Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany.
  • Waller MP; Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany.
Chemistry ; 23(25): 5966-5971, 2017 May 02.
Article em En | MEDLINE | ID: mdl-28134452
Reaction prediction and retrosynthesis are the cornerstones of organic chemistry. Rule-based expert systems have been the most widespread approach to computationally solve these two related challenges to date. However, reaction rules often fail because they ignore the molecular context, which leads to reactivity conflicts. Herein, we report that deep neural networks can learn to resolve reactivity conflicts and to prioritize the most suitable transformation rules. We show that by training our model on 3.5 million reactions taken from the collective published knowledge of the entire discipline of chemistry, our model exhibits a top10-accuracy of 95 % in retrosynthesis and 97 % for reaction prediction on a validation set of almost 1 million reactions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha