Your browser doesn't support javascript.
loading
In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves.
Aguiari, Paola; Iop, Laura; Favaretto, Francesca; Fidalgo, Cátia Marisa Lourenco; Naso, Filippo; Milan, Gabriella; Vindigni, Vincenzo; Spina, Michel; Bassetto, Franco; Bagno, Andrea; Vettor, Roberto; Gerosa, Gino.
Afiliação
  • Aguiari P; Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, via Giustiniani 2, I-35128, Padua, Italy. Venetian Institute of Molecular Medicine, Padua, Italy.
Biomed Mater ; 12(1): 015021, 2017 02 03.
Article em En | MEDLINE | ID: mdl-28157718
Notwithstanding their wide exploitation, biological prosthetic heart valves are characterized by limited durability (10-15 years). The treatment of biological tissues with chemical crosslinking agents such as glutaraldehyde accounts for the enhanced risk of structural deterioration associated with the early failure of bioprosthetic valves. To overcome the shortcomings of the currently available solutions, adoption of decellularized biological tissues of animal origin has emerged as a promising approach. The present study aims to assess in vitro cardiovascular scaffolds composed of bovine pericardium decellularized with the novel TRITDOC (TRIton-X100 and TauroDeOxyCholic acid) procedure. The effects of the treatment have been assessed by means of histological, biomolecular, cellular, biochemical and biomechanical analyses. The TRITDOC procedure grants the complete decellularization of bovine pericardial scaffolds while preserving the extracellular matrix architecture and the biomechanical properties. With a dedicated ELISA test, the TRITDOC procedure has been proven to ensure the complete removal of the alphaGal antigen, responsible for hyperacute rejection and for long-term deterioration of xenogenic biomaterials. Static seeding of the acellular pericardial patches with human adipose-derived stem cells resulted in an evenly repopulated scaffold without signs of calcification. The in vitro cyto-/immuno-compatibility response of the TRITDOC-bovine pericardium was compared with glutaraldehyde-treated xenogenic pericardium collected from two bioprosthetic devices currently used in clinical practice: PERIMOUNT MAGNA and TRIFECTATM. TRITDOC-bovine pericardium exhibited lower complement activation, lower cytotoxicity and a lower tendency to secrete pro-inflammatory cytokines compared to the tested commercial bioprostheses. Therefore, TRITDOC-decellularized pericardium could be considered as possible candidate material for the production of prosthetic heart valves.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pericárdio / Materiais Biocompatíveis / Bioprótese / Próteses Valvulares Cardíacas Limite: Animals / Humans Idioma: En Revista: Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pericárdio / Materiais Biocompatíveis / Bioprótese / Próteses Valvulares Cardíacas Limite: Animals / Humans Idioma: En Revista: Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália