Your browser doesn't support javascript.
loading
Giant ripples on comet 67P/Churyumov-Gerasimenko sculpted by sunset thermal wind.
Jia, Pan; Andreotti, Bruno; Claudin, Philippe.
Afiliação
  • Jia P; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636/Ecole Supérieure de Physique et Chimie Industrielles Paris-Paris Science Lettres Research University/Université Pierre et Marie Curie-Sorbonne Universités/Université Denis Diderot-Sorbonne Paris Cité, 75005 Paris, France.
  • Andreotti B; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636/Ecole Supérieure de Physique et Chimie Industrielles Paris-Paris Science Lettres Research University/Université Pierre et Marie Curie-Sorbonne Universités/Université Denis Diderot-Sorbonne Paris Cité, 75005 Paris, France.
  • Claudin P; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636/Ecole Supérieure de Physique et Chimie Industrielles Paris-Paris Science Lettres Research University/Université Pierre et Marie Curie-Sorbonne Universités/Université Denis Diderot-Sorbonne Paris Cité, 75005 Paris, France philippe.claudin@espci.fr.
Proc Natl Acad Sci U S A ; 114(10): 2509-2514, 2017 03 07.
Article em En | MEDLINE | ID: mdl-28223535
ABSTRACT
Explaining the unexpected presence of dune-like patterns at the surface of the comet 67P/Churyumov-Gerasimenko requires conceptual and quantitative advances in the understanding of surface and outgassing processes. We show here that vapor flow emitted by the comet around its perihelion spreads laterally in a surface layer, due to the strong pressure difference between zones illuminated by sunlight and those in shadow. For such thermal winds to be dense enough to transport grains-10 times greater than previous estimates-outgassing must take place through a surface porous granular layer, and that layer must be composed of grains whose roughness lowers cohesion consistently with contact mechanics. The linear stability analysis of the problem, entirely tested against laboratory experiments, quantitatively predicts the emergence of bedforms in the observed wavelength range and their propagation at the scale of a comet revolution. Although generated by a rarefied atmosphere, they are paradoxically analogous to ripples emerging on granular beds submitted to viscous shear flows. This quantitative agreement shows that our understanding of the coupling between hydrodynamics and sediment transport is able to account for bedform emergence in extreme conditions and provides a reliable tool to predict the erosion and accretion processes controlling the evolution of small solar system bodies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article País de afiliação: França