Your browser doesn't support javascript.
loading
High-resolution dynamic oxygen-17 MR imaging of mouse brain with golden-ratio-based radial sampling and k-space-weighted image reconstruction.
Liu, Yuchi; Zhang, Yifan; Wu, Chunying; Zhu, Junqing; Wang, Charlie; Tomko, Nicholas; Linetsky, Mikhail D; Salomon, Robert G; Ramos-Estebanez, Ciro; Wang, Yanming; Yu, Xin.
Afiliação
  • Liu Y; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
  • Zhang Y; Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
  • Wu C; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
  • Zhu J; Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
  • Wang C; Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
  • Tomko N; Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.
  • Linetsky MD; Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
  • Salomon RG; Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.
  • Ramos-Estebanez C; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
  • Wang Y; Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
  • Yu X; Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.
Magn Reson Med ; 79(1): 256-263, 2018 Jan.
Article em En | MEDLINE | ID: mdl-28295552
ABSTRACT

PURPOSE:

The current study aimed to develop a three-dimensional (3D) dynamic oxygen-17 (17 O) MR imaging method with high temporal and spatial resolution to delineate the kinetics of 17 O water uptake and washout in the brains of mice with glioblastoma (GBM).

METHODS:

A 3D imaging method with a stack-of-stars golden-ratio-based radial sampling scheme was employed to acquire 17 O signal in vivo. A k-space-weighted image reconstruction method was used to improve the temporal resolution while preserving spatial resolution. Simulation studies were performed to validate the method. Using this method, the kinetics of 17 O water uptake and washout in the brains of mice with GBM were delineated after an intravenous bolus injection of 17 O water.

RESULTS:

The proposed 17 O imaging method achieved an effective temporal resolution of 7.56 s with a nominal voxel size of 5.625 µL in the mouse brain at 9.4 T. Reduced uptake and prolonged washout of 17 O water were observed in tumor tissue, suggesting compromised cerebral perfusion.

CONCLUSION:

This study demonstrated a promising dynamic 17 O imaging approach that can delineate 17 O water kinetics in vivo with high temporal and spatial resolution. It can also be used to image cerebral oxygen consumption rate in oxygen-17 inhalation studies. Magn Reson Med 79256-263, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Isótopos de Oxigênio / Processamento de Imagem Assistida por Computador / Encéfalo / Neoplasias Encefálicas / Água / Glioblastoma Limite: Animals Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Isótopos de Oxigênio / Processamento de Imagem Assistida por Computador / Encéfalo / Neoplasias Encefálicas / Água / Glioblastoma Limite: Animals Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos