Your browser doesn't support javascript.
loading
Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.
Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C.
Afiliação
  • Nguyen HT; Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
  • Meir P; Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam.
  • Sack L; Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
  • Evans JR; School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK.
  • Oliveira RS; Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
  • Ball MC; Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
Plant Cell Environ ; 40(8): 1576-1591, 2017 Aug.
Article em En | MEDLINE | ID: mdl-28382635
ABSTRACT
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m-2  s-1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osmose / Água / Folhas de Planta / Avicennia / Clima Desértico / Salinidade Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osmose / Água / Folhas de Planta / Avicennia / Clima Desértico / Salinidade Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Austrália