Your browser doesn't support javascript.
loading
A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex.
Hardcastle, Kiah; Maheswaranathan, Niru; Ganguli, Surya; Giocomo, Lisa M.
Afiliação
  • Hardcastle K; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA. Electronic address: khardcas@stanford.edu.
  • Maheswaranathan N; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
  • Ganguli S; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
  • Giocomo LM; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address: giocomo@stanford.edu.
Neuron ; 94(2): 375-387.e7, 2017 Apr 19.
Article em En | MEDLINE | ID: mdl-28392071
Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Percepção Espacial / Ritmo Teta / Potenciais de Ação / Córtex Entorrinal / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neuron Assunto da revista: NEUROLOGIA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Percepção Espacial / Ritmo Teta / Potenciais de Ação / Córtex Entorrinal / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neuron Assunto da revista: NEUROLOGIA Ano de publicação: 2017 Tipo de documento: Article