Your browser doesn't support javascript.
loading
Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.
Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija.
Afiliação
  • Qu W; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
  • Johnson A; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
  • Kim JH; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
  • Lukowicz A; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
  • Svedberg D; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
  • Cvetanovic M; Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA. mcvetano@umn.edu.
J Neuroinflammation ; 14(1): 107, 2017 05 25.
Article em En | MEDLINE | ID: mdl-28545543
ABSTRACT

BACKGROUND:

Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1.

METHODS:

Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age.

RESULTS:

PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function.

CONCLUSIONS:

A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator Estimulador de Colônias de Macrófagos / Ataxias Espinocerebelares / Transtornos Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neuroinflammation Assunto da revista: NEUROLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator Estimulador de Colônias de Macrófagos / Ataxias Espinocerebelares / Transtornos Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neuroinflammation Assunto da revista: NEUROLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos