Your browser doesn't support javascript.
loading
Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles.
Sevenler, Derin; Avci, Oguzhan; Ünlü, M Selim.
Afiliação
  • Sevenler D; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
  • Avci O; Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA.
  • Ünlü MS; Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA.
Biomed Opt Express ; 8(6): 2976-2989, 2017 Jun 01.
Article em En | MEDLINE | ID: mdl-28663920
The sensitive detection and quantitative measurement of biological nanoparticles such as viruses or exosomes is of growing importance in biology and medicine since these structures are implicated in many biological processes and diseases. Interferometric reflectance imaging is a label-free optical biosensing method which can directly detect individual biological nanoparticles when they are immobilized onto a protein microarray. Previous efforts to infer bio-nanoparticle size and shape have relied on empirical calibration using a 'ruler' of particle samples of known size, which was inconsistent and qualitative. Here, we present a mechanistic physical explanation and experimental approach by which interferometric reflectance imaging may be used to not only detect but also quantitatively measure bio-nanoparticle size and shape. We introduce a comprehensive optical model that can quantitatively simulate the scattering of arbitrarily-shaped nanoparticles such as rod-shaped or filamentous virions. Finally, we optimize the optical design for the detection and quantitative measurement of small and low-index bio-nanoparticles immersed in water.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Revista: Biomed Opt Express Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Revista: Biomed Opt Express Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos