Your browser doesn't support javascript.
loading
Variations of leaf longevity in tropical moist forests predicted by a trait-driven carbon optimality model.
Xu, Xiangtao; Medvigy, David; Joseph Wright, Stuart; Kitajima, Kaoru; Wu, Jin; Albert, Loren P; Martins, Giordane A; Saleska, Scott R; Pacala, Stephen W.
Afiliação
  • Xu X; Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA.
  • Medvigy D; Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA.
  • Joseph Wright S; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
  • Kitajima K; Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama.
  • Wu J; Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama.
  • Albert LP; Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
  • Martins GA; Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA.
  • Saleska SR; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
  • Pacala SW; National Institute of Amazonian Research - INPA, Petrópolis, Brazil.
Ecol Lett ; 20(9): 1097-1106, 2017 09.
Article em En | MEDLINE | ID: mdl-28677343
ABSTRACT
Leaf longevity (LL) varies more than 20-fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the 'ageing rate' the rate at which leaf photosynthetic capacity declines with age. Here, we present a meta-analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass-based carboxylation rate of mature leaves. We assess an improved trait-driven carbon optimality model with in situLL data for 105 species in two Panamanian forests. We show that our model explains over 40% of the cross-species variation in LL under contrasting light environment. Collectively, our results reveal how variation in LL emerges from carbon optimisation constrained by both leaf structural traits and abiotic environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotossíntese / Clima Tropical / Folhas de Planta Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Ecol Lett Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotossíntese / Clima Tropical / Folhas de Planta Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Ecol Lett Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos