Your browser doesn't support javascript.
loading
Cryptic oxygen cycling in anoxic marine zones.
Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter.
Afiliação
  • Garcia-Robledo E; Microbiology Section, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark; emilio.garcia@uca.es.
  • Padilla CC; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0230.
  • Aldunate M; Graduate Program in Oceanography, Department of Oceanography, University of Concepción, 4070386 Concepcion, Chile.
  • Stewart FJ; Departamento de Oceanografía, Instituto Milenio de Oceanografía, Universidad de Concepción, 4070386 Concepción, Chile.
  • Ulloa O; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0230.
  • Paulmier A; Departamento de Oceanografía, Instituto Milenio de Oceanografía, Universidad de Concepción, 4070386 Concepción, Chile.
  • Gregori G; Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, Institut de Recherche pour le Développement, CNRS, Centre National d'Etudes Spatiales, University of Toulouse, 31400 Toulouse, France.
  • Revsbech NP; Aix Marseille Université, Université de Toulon, CNRS, Institut pour la Recherche et le Développement, Mediterranean Institute of Oceanography UM 110, 13288 Marseille, France.
Proc Natl Acad Sci U S A ; 114(31): 8319-8324, 2017 08 01.
Article em En | MEDLINE | ID: mdl-28716941
ABSTRACT
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oxigênio / Fotossíntese / Prochlorococcus / Ciclo do Carbono / Nitrificação País/Região como assunto: America do sul / Mexico / Peru Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oxigênio / Fotossíntese / Prochlorococcus / Ciclo do Carbono / Nitrificação País/Região como assunto: America do sul / Mexico / Peru Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article