Your browser doesn't support javascript.
loading
Changes in estuarine sediment phosphorus fractions during a large-scale Mississippi River diversion.
Roy, Eric D; Nguyen, Nhan T; White, John R.
Afiliação
  • Roy ED; Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, United States. Electronic address: eroy4@uvm.edu.
  • Nguyen NT; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, United States.
  • White JR; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, United States.
Sci Total Environ ; 609: 1248-1257, 2017 Dec 31.
Article em En | MEDLINE | ID: mdl-28787799
Ongoing deterioration and loss of wetlands in the Mississippi River delta threatens the survival of Louisiana's coastal ecosystems and human settlements. In response, the State of Louisiana has proposed a $50 billion, 50-year restoration program. A central piece of this program is the reintroduction of Mississippi River water into the deltaic plain using managed diversions that mimic natural flood pulses. These diversions would transport critically needed sediment, but also deliver large nutrient loads. Coastal eutrophication is therefore a concern, particularly blooms of toxin-producing cyanobacteria. The Bonnet Carré Spillway (BCS) is an existing large flood diversion that protects New Orleans and provides an opportunity to investigate diversion nutrient transport. Here, we quantify sediment phosphorus (P) deposited by the BCS for the first time, and use a sequential P fractionation scheme to evaluate the likelihood of future sediment P release to the water column of the Lake Pontchartrain Estuary. In 2011, we collected sediment cores in the estuary for determination of P fractions before and after the discharge of 21.9km3 of river water through the BCS in just under 6weeks. We observed the greatest net increases in sediment total P, inorganic P forms, and more labile organic P in the region near the inflow. We estimate that the diversion deposited ≥5000 metric tons of P in the sediments of the Lake Pontchartrain Estuary. The sum of readily available inorganic P, Fe/Al-bound inorganic P, and more labile organic P equaled approximately 20-30% of post-diversion sediment total P. These fractions are more likely to be released to the water column than the other sediment P forms we quantified. Diversion designs that encourage sedimentation in coastal marshes versus open bays can likely reduce the chances that deposited particulate P creates eutrophication risk.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2017 Tipo de documento: Article