Your browser doesn't support javascript.
loading
Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding.
Braun, Marcus; Lansky, Zdenek; Szuba, Agata; Schwarz, Friedrich W; Mitra, Aniruddha; Gao, Mengfei; Lüdecke, Annemarie; Ten Wolde, Pieter Rein; Diez, Stefan.
Afiliação
  • Braun M; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  • Lansky Z; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Szuba A; Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.
  • Schwarz FW; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  • Mitra A; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Gao M; Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.
  • Lüdecke A; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  • Ten Wolde PR; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Diez S; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Nat Chem Biol ; 13(12): 1245-1252, 2017 Dec.
Article em En | MEDLINE | ID: mdl-29035362
ABSTRACT
Microtubule-crosslinking motor proteins, which slide antiparallel microtubules, are required for the remodeling of microtubule networks. Hitherto, all microtubule-crosslinking motors have been shown to slide microtubules at a constant velocity until no overlap remains between them, leading to the breakdown of the initial microtubule geometry. Here, we show in vitro that the sliding velocity of microtubules, driven by human kinesin-14 HSET, decreases when microtubules start to slide apart, resulting in the maintenance of finite-length microtubule overlaps. We quantitatively explain this feedback using the local interaction kinetics of HSET with overlapping microtubules that cause retention of HSET in shortening overlaps. Consequently, the increased HSET density in the overlaps leads to a density-dependent decrease in sliding velocity and the generation of an entropic force that antagonizes the force exerted by the motors. Our results demonstrate that a spatial arrangement of microtubules can regulate the collective action of molecular motors through the local alteration of their individual interaction kinetics.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cinesinas / Microtúbulos Limite: Humans Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cinesinas / Microtúbulos Limite: Humans Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha