Your browser doesn't support javascript.
loading
Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.
Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter.
Afiliação
  • Li MH; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Yang YS; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Wang KC; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Chiang YH; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Shen PS; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Lai WC; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Guo TF; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
  • Chen P; Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan.
ACS Appl Mater Interfaces ; 9(48): 41845-41854, 2017 Dec 06.
Article em En | MEDLINE | ID: mdl-29134795
A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiOx counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO2 and mp-Al2O3), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO2/mp-Al2O3/np-Au:NiOx as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Taiwan