Your browser doesn't support javascript.
loading
Active turbulence in a gas of self-assembled spinners.
Kokot, Gasper; Das, Shibananda; Winkler, Roland G; Gompper, Gerhard; Aranson, Igor S; Snezhko, Alexey.
Afiliação
  • Kokot G; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
  • Das S; Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Winkler RG; Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Gompper G; Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Aranson IS; Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Snezhko A; Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; snezhko@anl.gov g.gompper@fz-juelich.de.
Proc Natl Acad Sci U S A ; 114(49): 12870-12875, 2017 12 05.
Article em En | MEDLINE | ID: mdl-29158382
ABSTRACT
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article