Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map.
Theor Appl Genet
; 131(3): 555-568, 2018 Mar.
Article
em En
| MEDLINE
| ID: mdl-29159422
KEY MESSAGE: Fifteen stable QTLs were identified using a high-density soybean genetic map across multiple environments. One major QTL, qIF5-1, contributing to total isoflavone content explained phenotypic variance 49.38, 43.27, 46.59, 45.15 and 52.50%, respectively. Soybeans (Glycine max L.) are a major source of dietary isoflavones. To identify novel quantitative trait loci (QTL) underlying isoflavone content, and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population comprised of 196 F7:8-10 recombinant inbred lines (RILs, Huachun 2 × Wayao) was utilized to evaluate individual and total isoflavone content in plants grown in four different environments in Guangdong. A high-density genetic linkage map containing 3469 recombination bin markers based on 0.2 × restriction site-associated DNA tag sequencing (RAD-seq) technology was used to finely map QTLs for both individual and total isoflavone contents. Correlation analyses showed that total isoflavone content, and that of five individual isoflavone, was significantly correlated across the four environments. Based on the high-density genetic linkage map, a total of 15 stable quantitative trait loci (QTLs) associated with isoflavone content across multiple environments were mapped onto chromosomes 02, 05, 07, 09, 10, 11, 13, 16, 17, and 19. Further, one of them, qIF5-1, localized to chromosomes 05 (38,434,171-39,045,620 bp) contributed to almost all isoflavone components across all environments, and explained 6.37-59.95% of the phenotypic variance, especially explained 49.38, 43.27, 46.59, 45.15 and 52.50% for total isoflavone. The results obtained in the present study will pave the way for a better understanding of the genetics of isoflavone accumulation and reveals the scope available for improvement of isoflavone content through marker-assisted selection.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Sementes
/
Glycine max
/
Locos de Características Quantitativas
/
Isoflavonas
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Theor Appl Genet
Ano de publicação:
2018
Tipo de documento:
Article