Your browser doesn't support javascript.
loading
Human Cortical Thickness Organized into Genetically-determined Communities across Spatial Resolutions.
Alexander-Bloch, Aaron F; Mathias, Samuel R; Fox, Peter T; Olvera, Rene L; Göring, Harold H H; Duggirala, Ravi; Curran, Joanne E; Blangero, John; Glahn, David C.
Afiliação
  • Alexander-Bloch AF; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
  • Mathias SR; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
  • Fox PT; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA.
  • Olvera RL; South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA.
  • Göring HHH; University of Texas of the Rio Grande Valley, Brownsville, TX, USA.
  • Duggirala R; South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA.
  • Curran JE; University of Texas of the Rio Grande Valley, Brownsville, TX, USA.
  • Blangero J; South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio, TX, USA.
  • Glahn DC; University of Texas of the Rio Grande Valley, Brownsville, TX, USA.
Cereb Cortex ; 29(1): 106-118, 2019 01 01.
Article em En | MEDLINE | ID: mdl-29190330
ABSTRACT
The cerebral cortex may be organized into anatomical genetic modules, communities of brain regions with shared genetic influences via pleiotropy. Such modules could represent novel phenotypes amenable to large-scale gene discovery. This modular structure was investigated with network analysis of in vivo MRI of extended pedigrees, revealing a "multiscale" structure where smaller and larger modules exist simultaneously and in partially overlapping fashion across spatial scales, in contrast to prior work suggesting a specific number of cortical thickness modules. Inter-regional genetic correlations, gene co-expression patterns and computational models indicate that two simple organizational principles account for a large proportion of the apparent complexity in the network of genetic correlations. First, regions are strongly genetically correlated with their homologs in the opposite cerebral hemisphere. Second, regions are strongly genetically correlated with nearby regions in the same hemisphere, with an initial steep decrease in genetic correlation with anatomical distance, followed by a more gradual decline. Understanding underlying organizational principles of genetic influence is a critical step towards a mechanistic model of how specific genes influence brain anatomy and mediate neuropsychiatric risk.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gêmeos / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Córtex Cerebral / Redes Reguladoras de Genes Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gêmeos / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Córtex Cerebral / Redes Reguladoras de Genes Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos