Mapping local and global variability in plant trait distributions.
Proc Natl Acad Sci U S A
; 114(51): E10937-E10946, 2017 12 19.
Article
em En
| MEDLINE
| ID: mdl-29196525
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Plantas
/
Ecossistema
/
Característica Quantitativa Herdável
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2017
Tipo de documento:
Article