Your browser doesn't support javascript.
loading
Mapping local and global variability in plant trait distributions.
Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian.
Afiliação
  • Butler EE; Department of Forest Resources, University of Minnesota, St. Paul, MN 55108; eebutler@umn.edu abhidatta@jhu.edu.
  • Datta A; Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205; eebutler@umn.edu abhidatta@jhu.edu.
  • Flores-Moreno H; Department of Forest Resources, University of Minnesota, St. Paul, MN 55108.
  • Chen M; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108.
  • Wythers KR; Department of Forest Resources, University of Minnesota, St. Paul, MN 55108.
  • Fazayeli F; Department of Forest Resources, University of Minnesota, St. Paul, MN 55108.
  • Banerjee A; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455.
  • Atkin OK; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455.
  • Kattge J; Australian Research Council Centre of Excellence in Plant Energy, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
  • Amiaud B; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
  • Blonder B; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
  • Boenisch G; German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.
  • Bond-Lamberty B; UMR 1137 Ecologie et Ecophysiologie Forestières, Université de Lorraine-Institut National de la Recherche Agronomique, 54506 Vandoeuvre-lès-Nancy, France.
  • Brown KA; Environmental Change Institute, University of Oxford, Oxford OX1 3BJ, United Kingdom.
  • Byun C; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
  • Campetella G; Joint Global Change Research Institute, Department of Energy Pacific Northwest National Laboratory, College Park, MD 20740.
  • Cerabolini BEL; Department of Geography and Geology, Kingston University London, Surrey KT1 2EE, United Kingdom.
  • Cornelissen JHC; School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
  • Craine JM; Plant Diversity and Ecosystems Management Unit, School of Biosciences & Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
  • Craven D; Department of Theoretical and Applied Sciences, University of Insubria, I-21100 Varese, Italy.
  • de Vries FT; Systems Ecology, Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
  • Díaz S; Jonah Ventures, Manhattan, KS 66502.
  • Domingues TF; German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.
  • Forey E; Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, 06120 Halle (Saale), Germany.
  • González-Melo A; School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom.
  • Gross N; Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Invetigaciones Cientificas y Técnicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina.
  • Han W; Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina.
  • Hattingh WN; Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14040-901 Bairro Monte Alegre, Ribeirao Preto, Sao Paulo, Brazil.
  • Hickler T; Laboratory of Ecology Ecodiv, Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Normandie Université, 76821 Mont-Saint-Aignan, France.
  • Jansen S; Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota 110111, Colombia.
  • Kramer K; Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain.
  • Kraft NJB; Institut National de la Recherche Agronomique, Unité Sous Contrat 1339, Centre d'Etude Biologique de Chizé, F 79360 Villiers en Bois, France.
  • Kurokawa H; Centre D'Étude Biologique de Chizé, CNRS-Université La Rochelle (UMR 7372), F-79360 Villiers en Bois, France.
  • Laughlin DC; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
  • Meir P; Key Laboratory of Biogeography and Bio-Resource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China.
  • Minden V; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa.
  • Niinemets Ü; Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt/Main, Germany.
  • Onoda Y; Department of Physical Geography, Goethe-University, 60438 Frankfurt/Main, Germany.
  • Peñuelas J; Institute of Systematic Botany and Ecology, Ulm University, 89081 Ulm, Germany.
  • Read Q; Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, 6708 PB Wageningen, The Netherlands.
  • Sack L; Chairgroup Forest Ecology and Management, Wageningen University, 6708 PB Wageningen, The Netherlands.
  • Schamp B; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.
  • Soudzilovskaia NA; Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan.
  • Spasojevic MJ; Department of Botany, University of Wyoming, Laramie, WY 82071.
  • Sosinski E; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
  • Thornton PE; School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.
  • Valladares F; Institute of Biology and Environmental Science, University of Oldenburg, 26111 Oldenburg, Germany.
  • van Bodegom PM; Department of Plant Physiology, Estonian University of Life Sciences, 51014 Tartu, Estonia.
  • Williams M; Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
  • Wirth C; CSIC, Unitat d'Ecologia Global CREAF-CSIC-UAB, Bellaterra 08193, Barcelona, Catalonia, Spain.
Proc Natl Acad Sci U S A ; 114(51): E10937-E10946, 2017 12 19.
Article em En | MEDLINE | ID: mdl-29196525
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plantas / Ecossistema / Característica Quantitativa Herdável Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plantas / Ecossistema / Característica Quantitativa Herdável Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2017 Tipo de documento: Article