Your browser doesn't support javascript.
loading
Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep.
Pobloth, Anne-Marie; Checa, Sara; Razi, Hajar; Petersen, Ansgar; Weaver, James C; Schmidt-Bleek, Katharina; Windolf, Markus; Tatai, Andras Á; Roth, Claudia P; Schaser, Klaus-Dieter; Duda, Georg N; Schwabe, Philipp.
Afiliação
  • Pobloth AM; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Checa S; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Razi H; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Petersen A; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
  • Weaver JC; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Schmidt-Bleek K; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Windolf M; Wyss Institute, Center for Life Science Building, 3 Blackfan Circle, Boston, MA 02115, USA.
  • Tatai AÁ; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Roth CP; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
  • Schaser KD; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Duda GN; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
  • Schwabe P; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
Sci Transl Med ; 10(423)2018 01 10.
Article em En | MEDLINE | ID: mdl-29321260
ABSTRACT
Three-dimensional (3D) titanium-mesh scaffolds offer many advantages over autologous bone grafting for the regeneration of challenging large segmental bone defects. Our study supports the hypothesis that endogenous bone defect regeneration can be promoted by mechanobiologically optimized Ti-mesh scaffolds. Using finite element techniques, two mechanically distinct Ti-mesh scaffolds were designed in a honeycomb-like configuration to minimize stress shielding while ensuring resistance against mechanical failure. Scaffold stiffness was altered through small changes in the strut diameter only. Honeycombs were aligned to form three differently oriented channels (axial, perpendicular, and tilted) to guide the bone regeneration process. The soft scaffold (0.84 GPa stiffness) and a 3.5-fold stiffer scaffold (2.88 GPa) were tested in a critical size bone defect model in vivo in sheep. To verify that local scaffold stiffness could enhance healing, defects were stabilized with either a common locking compression plate that allowed dynamic loading of the 4-cm defect or a rigid custom-made plate that mechanically shielded the defect. Lower stress shielding led to earlier defect bridging, increased endochondral bone formation, and advanced bony regeneration of the critical size defect. This study demonstrates that mechanobiological optimization of 3D additive manufactured Ti-mesh scaffolds can enhance bone regeneration in a translational large animal study.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Regeneração Óssea / Alicerces Teciduais / Fêmur Limite: Animals Idioma: En Revista: Sci Transl Med Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Regeneração Óssea / Alicerces Teciduais / Fêmur Limite: Animals Idioma: En Revista: Sci Transl Med Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha